97人妻人人澡人人爽国产一_一级视频网_国内精品久久久久精品_英语老师解开裙子坐我腿中间_免费观看很黄很色裸乳视频网站_亚洲人成色77777在线观看大战P

Fluorescent Optical Fiber Temperature Measurement Solution for Power Supply Special Contact in Rail Transit Industry

1. Introduction

The on-line monitoring system for power-specific contact optical fiber in the rail transit industry is specially designed to ensure the safe operation of high-voltage power equipment (such as transformers, switchgears, cable joints, and rectifiers) along the railway substation. The temperature difference between substations along the railway is large, and the vibration is frequent when the train passes. When these key equipment are used for too long, overload, insulation aging or poor contact, local overheating will occur. By monitoring the temperature of multiple points in the equipment in real time, it is possible to predict possible failures and effectively prevent accidents.

The on-line monitoring system for power-specific contact fiber in the rail transit industry is mainly composed of optical fiber temperature sensor, fluorescent fiber demodulator, monitoring host and human-machine exchange software.

image.png

2. Technical Advantages

The comparison of several main temperature measurement methods in the field of electric power at present:

2.1 Infrared Thermal Imaging Temperature Measurement System

Advantages:

1. Non-contact temperature measurement, and easy to operate;

2. Low cost.

Disadvantages:

1. The measurement is inaccurate, only the surface temperature can be measured, the real temperature of the internal hot spot cannot be measured;

2. Handheld, and cannot achieve online monitoring;

3. Artificial inspection, increase labor costs, the minimum annual labor costs of more than 100,000 Yuan.

2.2 Wireless Temperature Measurement System

Advantages:

1. Easy installation;

2. Low cost.

Disadvantages:

1. Poor reliability, with battery measurement, short life;

2. The insulation performance of cabinet is affected, so it cannot pass the test;

3. The large volume of the sensor affects the heat dissipation function;

4. The surface temperature can only be measured, but the real temperature inside the hot spot cannot be measured.

2.3 Fiber Bragg Grating Temperature Measurement System

Advantages:

1. Quasi-distributed temperature measurement can be realized, which is suitable for long-distance and large-area areas;

2. With optical fiber technology, the insulation performance is good.

Disadvantages:

1. Difficult to install;

2. Cannot achieve a single cabinet matching, cannot achieve in-situ display.

2.4 Fluorescent Optical Fiber Temperature Measurement System

Advantages:

1. Its performance is safe and reliable, and it can achieve calibration-free, good consistency, interchangeability and stability;

2. Long service life, maintenance-free. Minimum use of optical fiber sensors for 25 years;

3. The probe is small in size and can be used to measure the hot spot in depth, so as to realize the real and effective monitoring of the hot spot;

4. Anti-electromagnetic interference, good insulation performance, integrated into intelligent switchgear and passed the type test;

5. It can be displayed locally and integrated into the control system conveniently.

6. Easy installation and flexible networking;

7. High cost performance ratio.

Disadvantages:

1. The measuring distance is relatively short, usually in the order of 100 meters.

For the node temperature measurement of electrical equipment in power plants and substations, Herch’s fluorescent optical fiber temperature measurement has obvious advantages: no electrical interference, small size, long life, independent networking, and high reliability. 

3. System Characteristics

Guarantee the ideal isolation of primary and secondary power, good linearity and high accuracy;

Multichannel transmission: The information collected by the system can be uploaded and dispatched by FTU, GPRS or communication management unit in the box, and the transmission mode can be flexibly selected according to the field environment;

Do not reduce the safety level of electrical equipment: Temperature-measuring fluorescent optical fiber fire detector is small, 2.8mm in diameter, without any metal materials, electronic components, good insulation, 20cm withstands 100,000 volts voltage;

Full-year, all-weather security guardian: At least 25 years, 365 days a year, 24 hours a day real-time monitoring and analysis;

It reduces the blind area of monitoring and improves the safety of equipment: Positioning accuracy is 1 mm;

Cost savings: Directly installed in the temperature rise part, real-time recording and displaying monitoring point data to achieve unattended monitoring station objectives;

Maintenance basis is established: Fully grasp the operation of the equipment, can predict the aging of the equipment, so as to put forward the maintenance time and maintenance plan according to the operation status of the equipment;

Intelligent judgment: It can quickly judge and analyze the normal temperature, abnormal temperature and fire of the tested object.

4. Major Performance Indicators

image.png

image.png

5. Introduction of Main Components

The HQ series fluorescent optical fiber temperature monitoring system is selected as the on-line monitoring system for electric power connection in rail transit industry. A set of system is mainly composed of several optical fiber temperature sensors, a multi-channel optical fiber demodulator, monitoring host computer and human-machine exchange software.

5.1 HQ Series Fluorescent Fiber Temperature Demodulator

HQ series fluorescent optical fiber temperature demodulator receives real-time optical signal with temperature information from temperature-measuring fluorescent optical fiber fire detector, and demodulates it to temperature value to realize temperature measurement of monitored parts. When the actual measurement value is larger than the alarm setting value, the alarm signal sent out. They can work independently on a single computer, or can be used in multiple networking, and are suitable for application requirements of various scales.

5.2 Temperature-measuring Fluorescent Optical Fiber Fire Detector

The probe size of temperature-measuring fluorescent fiber-optic fire detector is very small and can be directly installed at the measured point, which can measure temperature accurately and respond quickly. Its tail fiber is made of soft and strong special optical fiber, which has the advantages of high transmission bandwidth, stable signal, anti-electromagnetic interference, anti-flexure, high impact strength and fast connection.

The tail fiber sheath has the characteristics of high temperature resistance, aging resistance, corrosion resistance, high insulation, non-adherence and so on. It can adapt to the harsh environment of high voltage, high temperature, strong electromagnetic and so on.

5.3 Monitor Host

The monitoring host can receive and process the normal information, fault information and disaster information from the optical fiber temperature demodulator in real time, and quickly process and manage them. The monitoring host has the functions of fault monitoring, display, alarm and information exchange. At the same time, the remote monitoring can be realized through the network.

5.4 Men-Machine Interface

The main functions of the software system include real-time temperature local monitoring, real-time data remote monitoring, high/low temperature alarm, high/low temperature early warning, historical data playback, pre-alarm and post-alarm curve, temperature export to Excel and other functions.

6. Construction cases

Installation of monitoring host: The monitoring host of this system is installed in the monitoring cabinet of the substation control room, and a monitoring computer is set up in the central control station for remote monitoring.

Installation of HQ Series Optical Fiber Temperature Demodulator: The demodulator is installed on the back wall of the instrument panel in front of the switchgear to facilitate future maintenance.

image.png

Box Substation Installation

image.png

Schematic Diagram of the Layout of the Switchgear in the HQ Series Fluorescent Optical Fiber Temperature Monitoring System

Installation of HQ-12 Temperature-measuring Fluorescent Optical Fiber Sensor

1. Installation on Switchgear Contacts

image.png

       The main hotspot of switchgear is located at the joint of static and dynamic contacts, but this part is protected by insulating sleeve, and the space inside is very narrow. In order to measure the heating temperature of contacts more accurately, the diameter of HQ-12 temperature-measuring fluorescent optical fiber sensor is 2.8mm. It can extend into the inner of the sleeve from the rear of the sleeve along the confluence row. A high temperature resistant and high insulation installation clamp is designed specifically for the static contacts, which can fix the sensor firmly on the static contacts. 

When fixing the fluorescent optical fiber fire detector with a clamp, the sensor head is fixed in the fixed groove of the sensor first, and then the clamp and the sensor head are clamped on the cylinder of the static contact. During installation, the clamp is installed at the joint of the static contact and the bus bar to keep a safe distance from the movable contact.

2. Installation at Cable Joint of Switchgear

image.png

The fluorescent optical fiber fire detector for temperature measurement was pasted on the cable joint with special aviation silica gel and fixed with special strapping.

After the installation of the temperature-measuring fluorescent optical fiber fire detector is completed, the tail fibers are tied to the copper bars connected with the rear of the static contacts with insulating straps to prevent the temperature-measuring fluorescent optical fiber probe from hitting the adjacent contacts in case of falling off.

Inside Cabinet Wiring

In order not to affect the electrical distribution in the cabinet, as well as the future overhaul of the cabinet, cables and tail fibers in the cabinet should be as far as possible along the corner of the cabinet, or take a special trunk or bundle with the secondary cable in the cabinet.

image.png

HQ series transformer winding temperature measurement system, the optical fiber sensor probe is installed in winding coil in the process of transformer fabrication. Through flange penetrator, the internal and external optical signals are docked, and the temperature measurement host is analyzed and demodulated to realize real-time on-line temperature measurement.

Background communication: Real-time temperature data of field power equipment are uploaded to the backstage monitoring system through 485 parallel lines or optical cable transmission.

About insulation and anti-creeping: Temperature-measuring fluorescent optical fiber fire detector has high insulation, anti-creeping, anti-corrosion.

Attachment: Product Model


主站蜘蛛池模板: 国产成人欧美一区二区三区 | 美女粉嫩饱满的一线天mp4 | 国产真实偷乱视频在线观看 | 波多野结衣一区二区在线 | 东京热男人aV天堂 | 国产精品美女久久久久网站 | 波多野结衣高清无码视频 | 国产精品免费看久久久8精臀av | 中文字幕9 | 免费aa毛片 | 在线观看免费观看视频 | 欧美人妻一区二区三区 | 国产免费丝袜调教视频 | 欧美一区二区精品久久久 | 色综合久久精品 | 日韩在线播放一区二区 | 91免费播放 | 国产第一页视频在线播放 | 99久久久无码国产精品性色戒 | 国产大片一区二区三区 | 乌克兰鲜嫩xxxx | 色屋久久 | 国产在视频线精品视频 | 国产麻豆老师在线观看 | 亚洲一区在线国产 | 久久久久久久9 | 国内精品偷拍视频 | 人妻换着玩又刺激又爽 | 美腿玉足一区二区三区视频 | 日韩AV无码AV免费AV不卡AV | 97永久免费视频 | 久久AV喷潮久久AV高清 | 国产亚洲真人做受在线观看 | 日本黄H兄妹H动漫一区二区三区 | 成人二三区 | 搜一级毛片 | 欧美精品一卡 | 色yeye网站| 高H紫黑色的又粗又上翘 | 九九九九九九九伊人 | 久在草视频 |